US010977380B2

a2y United States Patent (10) Patent No.: US 10,977,380 B2

Ferrans et al. 45) Date of Patent: Apr. 13, 2021
(54) HYBRID ROLE AND ATTRIBUTE BASED 9,774,586 Bl 9/2017 Roche et al.
ACCESS CONTROIL. SYSTEM 0,853,993 Bl * 12/2017 Zhoucocove...... HOA4L. 63/1425
10,831,904 B2* 11/2020 Braksator GOGF 16/903
: : : : 2003/0084069 Al 5/2003 Boreham et al.
(71) Applicant: I{}JStake Technologies, Inc., Chicago, IL >008/0016580 Al 12008 Dixit of al
(US) 2008/0034438 Al 2/2008 Mireku et al.
2009/0106207 Al 4/2009 Solheim
(72) Inventors: James Ferrans, Wheaton, IL (US); 2009/0150981 Al 7/2009 Amies et al.
John Berg, Westmont, IL (US) 2009/0288136 Al 11/2009 Chang et al.
2011/0137946 Al* 6/2011 Siressoo..... GO6F 21/6227
(73) Assignee: Uptake Technologies, Inc., Chicago, IL 707/784
2012/0060207 Al1* 3/2012 Mardikar GO6F 21/31
(US)
726/4
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 106 days. OTHER PUBLICATIONS
(21) Appl. No.: 15/990,276 International Search Report and Written Opinion for International
Application No. PCT/US2019/033562, dated Aug. 13, 2019.
(22) Filed: May 25, 2018 (Continued)
(65) Prior Publication Data Primary Examiner — Sarah Su
US 2019/0362087 Al Nov. 28, 2019 (74) Attorney, Agent, or Firm — Lee Sullivan Shea &
Smith LLP
(51) Int. CL
GO6F 21/00 (2013.01) (37) ABSTRACT
GOOl 21/62 (2013'0;‘) A method may include receiving, from a client device, a
GO6F 21/51 (2013.01) request for a resource of a computer system, determining,
(52) US. Cl. one or more roles of a user associated with the client device,
CPC e Goor 21/6218 (2013.01); GO6L" 21/31 and determining one or more attributes of the user. The
(2013.01) method may include determining one or more attributes of
: : : M g
(58) FKield of Classification Search the resource and determining an access permission based on
CPC e ARLLAANALES G O6F 21/6218,j GO6F 21/31 tj_’le one or more roles Of the user and the resource. The
See application file for complete search history. method may include generating, by a processing device, a
_ modified access permission by modilying the access per-
(56) References Cited mission based on at least one of: the one or more attributes
U.S. PATENT DOCUMENTS of th‘e user or the one or more attributes of the resource and
providing or denying access to the resource of the computer
7.107.610 B2* 9/2006 LOMZ wovoveeveooerevn! H04T . 63/08 system based on the modified access permission.
709/223
8,078,122 Bl 3/2015 Zolfonoon et al. 23 Claims, 11 Drawing Sheets
N | RECEVE, FROM A CLIENT DEVICE, A
Vo e e

v
 DETERMINE ©NE OR MORE ROLES OF

| AUSERASSOCIATEDWITHTHE < g
| CLIENT DEVICE

v
BETVERRMINE ONE OR MORE _
ATTRIBUTES OF THE USER Te— 96

................................

: DETERMINE AN ACCESS PERMISEKIN
{BASED ON THE ONME QR MIRE ROLES ——_ 21
: OF THE USER AND THE RESOURCE

| GENERATE, BY A EROCESSIHNG

. DEVICE, A MODIFIED ACCESS

| PERMISSION BY MODIFYING THE

| ACCESS PERMISSION BASED ONAT

| LEAST ONE OF: THE ONE ORMORE " 912
| ATTRIBUTES OF THE USER OR THE

' ONE OR MORE ATTRIBUTES OF THE

' RESQURCE

¥
. PRCVIDE OR DENY ACCESS TO THE
| RESOLRCE OF THE COMPUTER
. SYSTEM BASED ON THE MODIFIED. — —— ¥4
ACCESS PERMISSION

""" CENERATE AN ACCESS POLCY
 COMPRISING THE MODIFIED ACCESS —~— 218
o DERMISSION

PROVIDE THE ACCESS POLICY TO
' THE COMPUTER SYSTEM T 918

US 10,977,380 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0007891 Al 1/2013 Mogaki

2013/0283340 Al 10/2013 Biswas et al.

2013/0283350 Al* 10/2013 Afekcceeenn, GO6F 21/6218
726/4

2014/0115005 Al1* 4/2014 Weekcoeee GOO6F 21/6218

707/785

2014/0282889 Al* 9/2014 Ishaya HO4L 63/0876
726/4

2015/0101014 Al 4/2015 Gilambiagi et al.

2016/0072814 Al* 3/2016 Martinellr HO4L 63/101
726/1

2016/0246983 Al 8/2016 Rissanen et al.

2016/0267413 Al* 9/2016 Liangc.c...... GO6F 21/552

2016/0357869 Al 12/2016 Hang

2017/0134242 Al 5/2017 Radl ...l GO6N 5/025

2017/0223138 Al /2017 Amirtcoee.. HO4L 67/02

2017/0339148 A1 11/2017 Syomichev et al.

2018/0124031 Al 5/2018 Krishnaprasad

2018/0268159 Al* 9/2018 Yu ..ccooovvveeiinniinnnnnn, HO4L 9/0819

2019/0050476 Al* 2/2019 Florentino GO6F 16/313

2019/0306171 Al* 10/2019 Sisley ...ooooevvvinnnn, GO6F 21/10

2019/0364051 Al* 11/2019 Ferrans HO4L 63/10

2020/0120098 Al* 4/2020 Bergccvvvnnnnn, GO6F 21/604

2020/0186531 Al* 6/2020 Bugenhagen HO4L 67/12

OTHER PUBLICATIONS

Chen Zhen et al. Query rewritting 1n spatial database for access
control, Computing for Geospatial Research & Applications ACM

2 Penn Plaze Suite 701 New York 10121-0701 USA May 23, 2011
(May 23, 2011) pp. 1-4.

Calero et al. Toward a Multi-Tenancy Authorization System for

Cloud Services. Security & Privacy, IEEE, Nov. 1, 2010, pp. 1-7.
[online]. [retrieved on Mar. 20, 2020]. Retrieved from the Internet
<URL:https://www.researchgate.net/publication/224202017_Tow.

Tang et al. A multi-tenant RBAC model for collaborative cloud
services. 2013 Eleventh Annual Conference on Privacy, Security
and Trust, IEEE, Jul. 10, 2013, pp. 229-238. [online], [retrieved on
Mar. 20, 2020]. Retrieved from the Internet <URL:https://www.

profsandhu.com/cs6393_s16/Tang-etal-2013b.pdf>.

Ranjbar, Alireza. Domain Isolation mn a Multi-Tenant Software-
Defined Network. Aalto University, Finland, Dec. 2015, 10 pages.
[online], [retrieved on Mar. 20, 2020]. Retrieved from the Internet
<URL: http://www.cs.hut.fi/~antikam 1/domainIsolation.pdf>.
Ranjbar, Alireza. Domain Isolation mn a Multi-Tenant Software-
Defined Network. AALTO University: School of Electrical Engi-
neering. Thesis submutted for degree of Master of Science in
Technology. Apr. 15, 2015 107 pages.[online], [retrieved on Mar.
20, 2020]. Retrieved from the Internet <URL:https://core.ac.uk/
download/pd1/80715216.pd1>.

Tang et al. Multi-Tenancy Authorization Models for Collaborative
Cloud Services. Collaboration Technologies and Systems, 2013
International Conference On, IEEE, May 20, 2013, pp. 132-138.
[online], [retrieved on Mar. 20, 2020]. Retrieved from the Internet
<URL:https://1eeexplore.ieee.org/document/6567218>.

Calero et al. Toward a Multi-Tenancy Authorization System for
Cloud Services. Security & Privacy, IEEE, Nov. 1, 2010, pp. 48-55.
[online]. [retrieved on Mar. 20, 2020]. Retrieved from the Internet
<URL:https://s3.amazonaws.com/academia.edu.documents/45820841/
msp.2010.19420160520-7567-107ywuv.pdf>.

* cited by examiner

US 10,977,380 B2

Sheet 1 of 11

Apr. 13, 2021

U.S. Patent

L Ol

0

o

b H3ANAS

e e T
- .

T e -
] -
- -

0ct
F40LS Vivd

-

s

e o mr wwd w omr o a o

-t (R
— -

— LW N E E EEEEEEETEETEEEES®§ W
L L]
e

- - el
.- e o o om omen L
- 1.._.-|.-.I|.-. I.I....-..I.T -
.-I.1..1 I-Jlul..
. - .
i |
i
T -
e, -
L -

0ct
FOIAIA ONISSITO0Ud

ll

L]
%
=
Yy -
(1)
o

P R g R R L R R R L L R R R R R R R R R R S S R R R R R S S S G R R S R SR R R S S R R S R G R R S R R S R R S S R R R R R R R R S S R S S R R R S e R G S R R S R R S R R R R R R S R R R S S R R S R S S R R R R R R R R R S S R S S R S R S R S R R R SR R R S R R R R S e R g g

111

US 10,977,380 B2

Sheet 2 of 11

Apr. 13, 2021

U.S. Patent

¢ Ol

B AU
1 |
N . . .
L 9 INddd
X
N 4
.
o, e
-) - “
/ N 4 N
.,.r .
._ ,_ —— :
___ 90¢ |
|
\ . : o - i
| . edadsh
._._....] ._.‘m
\
,/,,,,, yd
. .%
i . L - e - -,
/ ’ h
| / .
W h \
. .h,. . ,_..
_, 4coc .ﬂ

L]
L]
. t
. i
L g
L]
)
kY .x,
™ .\.\ "
r ..,.....-. —1 H
/ e
1
|
i
" - -
._: ‘.l.l.l. -
.
Iy //..
/ \
1.F._.
'] 1
_h 87 0¢ .
' .]
{
_.) R ;
. e e o) :
-_'-. ‘
N 0
1; _.._..v...r.._
; !
ﬂ ._._........
| ._._.-.,... ,
i ~ -
..__ e - e o

o T e
- n-‘k‘
-.-1-1-T-
K
I
._.,_.. s
g . : '
¥ .)]
1 . \
— h - Y
[]
\ 1

L0

US 10,977,380 B2

Sheet 3 of 11

Apr. 13, 2021

U.S. Patent

. . & . .

i e ep—

‘‘‘‘‘‘

s
- g e

& Ol

L OE

US 10,977,380 B2

Sheet 4 of 11

Apr. 13, 2021

U.S. Patent

g — T———y .
-rr i

[ERT il gt]

. . & . .

‘‘‘‘‘‘‘‘‘

lllllll

v Old

AT
-

-~
™
—

LOv

U.S. Patent Apr. 13, 2021 Sheet 5 of 11 US 10,977,380 B2

500

PERMISSION 506

FIG. 5

512

S
=
N
< t
<
S
0
S

US 10,977,380 B2

Sheet 6 of 11

Apr. 13, 2021

U.S. Patent

Henso;

¢c9

r m oA m =T

a
]
!
5
1
!
L]
h

N fRieD ey \

08
SJ8pI0

il T TR T

o
" o

-
- -
.IJ.I LT e = -

eieoe; |

4
i
'
1
1
..
4
7
[

S

1
’- -
Y

L]
-

.

¢l
q0g/e/

’
o
r

F
b
i
.
v
'
!

i
i
F
5
i
f

18pi0/qog/e/;

\ jeolyrel
N e

v,
o
.-.f...l .

e

! §Ig
Lo odllylel

A 11 I
- Sieplio

b

v

-
W o o

[

109

d. Old

1.3000.,):,88p00 Ju8lfo,

US 10,977,380 B2

‘11 sepod” L
GO
507 (g0g) ¥3sn
_ _ {
1.£000, '.2000, *.1004,}-,$2p00jUSD, _
1.2008, ‘1008,)., S8p0d ujuipe, L
- - b £07
n T R
g B lojs dde,
=
)
102
y— . | B geaNy
z V4 Old
e}
L SRR
= o
- yoIsawng@llvyl, e
N < » 0/ ¥3SN
807 SILNGMLLY -7}

- NOILYZINVOYO |

III

- NOILYZINYOHO |

00L —

U.S. Patent

U.S. Patent Apr. 13, 2021 Sheet 8 of 11 US 10,977,380 B2

" AUTH SERVICE WEB SERVICE 804

- f POLICY
e 5 | ENFORCEMENT 5
 POINT (PEP) 802

T

ACCESS
~ CONTROLLED |
~ DATABASE 806 |

~ AUTH SERVICE
' DATABASE 810

P e e e e i e e o e i e o e e e e e e e e e e i e e e e e e e e e e e e e e e e e o] i e e o e e e e e o e e e e e e e e e e e e e e e e o o e e e e e e e e e e e e e e e e e o e e e e e e e e e e e o e e e

WEB SERVICE 811

AUTH SERVICE
* DATABASE 807

““““““““““““““““““““““““ POLICY
ENFORCEMENT
POINT (PEP) B3

"""""""""""""""""""""""""""" ~ ACCESS CONTROLLED
SEARCH DATABASE 809

44

U.S. Patent Apr. 13, 2021 Sheet 9 of 11 US 10,977,380 B2

WO~ RECEIVE, FROM A CLIENT DEVICE, A |
. REQUEST FOR A RESOURCE OF A M 907

COMPUTER SYSTEM

DETERMINE ONE OR MORE ROLES OF
~ AUSERASSOCIATEDWITHTHE —___ gyy
CLIENT DEVICE a

~ DETERMINEONE ORMORE |
 ATTRIBUTESOF THEUSER | — 906
" DETERMINE ONE ORMORE |
 ATTRIBUTES OF THERESOURCE | %

DETERMINE AN ACCESS PERMISSION
BASED ON THE ONE OR MORE ROLES — 919
 OF THE USER AND THE RESOURCE -

GENERATE, 3Y A PROCESSING
DEVICE, A MODIFIED ACCESS
~ PERMISSION BY MODIFYING THE
 ACCESS PERMISSIONBASEDONAT
~ LEAST ONE OF: THE ONE OR MORE s
~ ATTRIBUTES OF THE USER OR THE |
- ONE OR MORE ATTRIBUTES OF THE
; - RESOURCE -

T

- PROVIDE OR DENY ACCESS TO THE |
~ RESOURCE OF THE COMPUTER
-~ SYSTEM BASED ON THE MODIFIED | — 914
f ACCESS PERMISSION

 GENERATE AN ACCESS POLICY |

COMPRISING THE MODIFIED ACCESS 916
; ~ PERMISSION

-|'

1

]

O

i

_— = ma { " m R mE.-E R AR R E. mE. mm .= ®m LI mm. =
- = A = m s = ‘-I‘--J--‘-I.--J-- A& & 1 A & W J & m. &aa .4 & FTJd = m. aaa. &4 & . & & =L & mS & -,
1

]

.

1

1

]

<

1

- PROVIDE THE ACCESS POLICY TO |
1 THE COMPUTER SYSTEM T 918

FIG. 9

U.S. Patent Apr. 13, 2021 Sheet 10 of 11 US 10,977,380 B2

1000
\ RECEIVE A REQUEST FOR A —~—— 1002

RESOURCE OF A COMPUTER SYSTEM

l

DETERMINE ONE OR MORE
ATTRIBUTES OF A USER ASSOCIATED
WITH THE REQUEST, WHEREIN THE
ONE OR MORE ATTRIBUTES ARE
BASED ON A STATUS OF THE USER IN
AN ORGANIZATION HIERARCHY, THE
ORGANIZATION HIERARCHY
COMPRISING ONE OR MORE SUB
ORGANIZATIONS CORRESPONDING

TO THE USER: 1004

l

DETERMINE THAT THE REQUEST
COMPRISES ONE OR MORE ~— 10006
ATTRIBUTE NAMES

l

IN RESPONSE TO RECEIVING THE
REQUEST, GENERATE, BY A
PROCESSING DEVICE, AN ACCESS
PERMISSION BASED ON THE
ORGANIZATION HIERARCHY
CORRESPONDING TO THE USER AND
THE ONE OR MORE ATTRIBUTE
NAMES, BY REPLACING THE ONE OR
MORE ATTRIBUTE NAMES WITH THE
ONE OR MORE ATTRIBUTES

" L L L T |

PROVIDE OR DENY ACCESS TO THE
RESOURCE OF THE COMPUTER
SYSTEM BASED ON THE ACCESS [—— 1010
PERMISSION

—~— 1008

U.S. Patent

COMPUTING

DEVICE
1100

Apr. 13,2021

INSTRUCTIONS
1126

MAIN MEMORY 1104

INSTRUCTIONS
1126

STATIC MEMORY
11086

| NETWORK INTERFACE DEVICE
%: 1108

V' NETWORK !
1120

PN

Sheet 11 of 11

US 10,977,380 B2

VIDEO DISPLAY
1110

ALPHA-NUMERIC INPUT
DEVICE
1112

CURSOR CONTROL DEVICE
1114

SIGNAL GENERATION DEVICE |
1116 i

1
iy i
1
1
1
1
1
1
1

INSTRUCTIONS
1126

FIG. 11

US 10,977,380 B2

1

HYBRID ROLE AND ATTRIBUTE BASED
ACCESS CONTROL SYSTEM

TECHNICAL FIELD

Aspects of the present disclosure relate to access control
systems, and more particularly, to a hybrid role and attribute
based access control system.

BACKGROUND

In general, access control systems allow for the authen-
tication, authorization, and/or audit of client devices and
user credentials. In an access control system, the entities that
can perform actions on the system are called subjects, and
the entities representing resources to which access may need
to be controlled are called objects. Subjects and objects may
both be considered as software entities. Authorization speci-
fies what a subject can do and identification and authent-
cation ensure that only legitimate subjects can log on to a
system. Access approval via an access control system grants
access during operations, by association of users with the
resources that they are allowed to access, based on the
authorization policy. Authentication methods and tokens
include passwords, biometric scans, physical keys, elec-
tronic keys and devices, hidden paths, social barriers, and
monitoring by humans and automated systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The described embodiments and the advantages thereof
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings. These drawings 1n no way limit any changes 1n
form and detail that may be made to the described embodi-
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments.

FIG. 1 1s a block diagram that illustrates an example
access control system, 1 accordance with some embodi-
ments ol the present disclosure.

FIG. 2 1s a block diagram that illustrates an example
policy graph without roles, in accordance with some
embodiments of the present disclosure.

FIG. 3 1s a block diagram that illustrates an example
policy graph with flat roles, in accordance with some
embodiments of the present disclosure.

FIG. 4 1s a block diagram that illustrates an example
policy graph with a role hierarchy, 1n accordance with some
embodiments of the present disclosure.

FIG. 5 1s a block diagram that illustrates an example
authorization service data model, 1n accordance with some
embodiments of the present disclosure.

FIG. 6 1s a block diagram that illustrates an example
resource hierarchy, 1n accordance with some embodiments
of the present disclosure.

FIG. 7A 1s a block diagram that illustrates an example
authentication service user and organization attributes data

model, 1n accordance with some embodiments of the present
disclosure.

FIG. 7B 1s a block diagram that illustrates example user
attributes, 1n accordance with some embodiments of the
present disclosure.

FIG. 8A 1s a block diagram that illustrates an example
external policy enforcement point, 1n accordance with some
embodiments of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8B 1s a block diagram that illustrates an example
internal policy enforcement point, 1n accordance with some

embodiments of the present disclosure.

FIG. 9 1s a flow diagram of a method of hybrnid access
control, 1n accordance with some embodiments.

FIG. 10 1s a flow diagram of a method of organization
based access control, in accordance with some embodi-
ments.

FIG. 11 1s a block diagram of an example computing
device that may perform one or more of the operations
described herein, in accordance with some embodiments of
the present disclosure.

DETAILED DESCRIPTION

In general, each access control system supports a policy
governing what permissions each user of the system has.
Permissions may mvolve an action on a resource (possibly
composed of many smaller resources). For example, one
user could be granted a permission to “read” all records in
a table of a relational database, while another could be
granted a permission to “read”, “create”, “update,” and
“delete” those records. The range of actions and resources 1s
unbounded and very general: they can be virtual or physical,
coarse- or fine-grained, etc.

A variety of access control methodologies exists. Role-
based access control (RBAC) mtroduces a third entity
between users and permissions: roles. A role may be an
aggregation ol permissions (each an action on a resource),
and 1t 1s given a descriptive name like “Database Reader” or
“Loan Approver.” Permissions may be granted to roles and
revoked from them. Users may be placed i roles and
removed from them. RBAC can grow increasingly compli-
cated when there are many users and many resources, and
access to those resources does not follow a regular pattern.
Another access control methodology 1s attribute-based
access control (ABAC).

In an ABAC system, when a user requests access to a
resource, the ABAC system makes an access control deci-
sion based on a policy defined 1n terms of attributes (name/
value pairs). Attributes describe the user, the resource, and
the environment (or context) of the access control decision
(things like the time of day, day of week, physical location
of the user as determined by IP address, etc.). For example,
a user might be granted access to a patient’s medical record
if (a) the user has the job title “MD” or “Registered Nurse”,
and (b) the medical record includes a signed privacy agree-
ment Like the RBAC system, the ABAC can grow increas-
ingly complicated when there are many users and many
resources, and access to those resources does not follow a
regular pattern.

The present disclosure addresses the above deficiencies
by introducing a new form of hybrid RBAC/ABAC system,
called permission-centric. Because the access control com-
munity considers permissions “as un-interpreted symbols™
they seem to have missed what’s possible 1t yvou define a
deeper structure for permissions (e.g., one leveraging attri-
butes). In a permission-centric approach, the user’s permis-
sions are gathered just as mn a RBAC system—the user’s
roles are determined, and all the permissions granted by
those roles are gathered together. While other role-centric
hybrid approaches may then go on to eliminate some of
those permissions based on the set of attributes, the current
approach retains all the permissions but modifies them based
on the set of attributes.

FIG. 1 1s a block diagram that illustrates an example
access control system 101, i accordance with some

US 10,977,380 B2

3

embodiments of the present disclosure. In one embodiment,
access control system functionality may be provided by a
server 100. Server 100 may include various components,
which may allow an access control system application to run
on a server device. Fach component may perform different
functions, operations, actions, processes, methods, etc., for
an access control system and/or may provide different
services, functionalities, and/or resources for the access
control system.

Diflerent components of system 101 may be located on
and/or may execute on different processing devices (e.g.,
processing device 120) of the server 100, as discussed in
more detail below. In one embodiment, authorization service
127 may be implemented on processing device 120 of server
100. In one embodiment, authorization service 127 performs
hybrid role and attribute based access control system opera-
tions. In another embodiment, authorization service 127
performs role, attribute, and/or organization based access
control system operations.

As 1llustrated 1n FIG. 1, server 100 includes a computing
processing device 120, a data store 130, and a network 103.
The processing device 120 and the data store 130 are
coupled to each other (e.g., may be operatively coupled,
communicatively coupled, may communicate data/messages
with each other) via network 105. Network 105 may be a
public network (e.g., the internet), a private network (e.g., a
local area network (LAN) or wide area network (WAN)), or
a combination thereof. In one embodiment, network 105
may include a wired or a wireless infrastructure, which may
be provided by one or more wireless communications sys-
tems, such as a wireless local area network (WLAN) (e.g.,
WiF1®) hotspot connected with the network 105 and/or a
wireless carrier system that can be mmplemented using
various data processing equipment, communication towers
(e.g. cell towers), etc. The network 105 may carry commu-
nications (e.g., data, message, packets, frames, etc.) between
the various components of server 100. The data store 130
may be a persistent storage that 1s capable of storing data. A
persistent storage may be a local storage unit or a remote
storage unit. Persistent storage may be a magnetic storage
unit, optical storage unit, solid state storage unit, electronic
storage units (main memory), or similar storage unit. Per-
sistent storage may also be a monolithic/single device or a
distributed set of devices.

Each component may include hardware such as process-
ing devices (e.g., processors, central processing units
(CPUs), memory (e.g., random access memory (RAM),
storage devices (e.g., hard-disk drive (HDD), solid-state
drive (SSD), etc.), and other hardware devices (e.g., sound
card, video card, etc.). The servers 100, 103 may comprise
any suitable type of computing device or machine that has
a programmable processor including, for example, server
computers, desktop computers, laptop computers, tablet
computers, smartphones, set-top boxes, etc. In some
examples, the server 100 may comprise a single machine or
may include multiple interconnected machines (e.g., mul-
tiple servers configured 1n a cluster). The server 100 may be
implemented by a common entity/organization or may be
implemented by different enftities/organizations. For
example, a server 100 may be operated by a first company/
corporation and a second server (not pictured) may be
operated by a second company/corporation. Each server
may execute or include an operating system (OS), as dis-
cussed 1 more detail below. The OS of a server may manage
the execution of other components (e.g., soltware, applica-
tions, etc.) and/or may manage access to the hardware (e.g.,
processors, memory, storage devices etc.) of the computing,

10

15

20

25

30

35

40

45

50

55

60

65

4

device. Further implementation details of the operations
performed by server 100 are described with respect to FIGS.
2-11.

FIG. 2 1s a block diagram that illustrates an example
policy graph 201 without roles, in accordance with some
embodiments of the present disclosure. In one embodiment,
a role-based access control system provides authorization to
perform particular actions by particular people or client
devices. In other words, authorization (e.g., access control)
1s a process that determines whether an authenticated user
has the right to perform some requested action (e.g., “Get”)
on a given resource (e.g., a particular web service endpoint).
For example, an access control system may provide
responses to questions of the form: “Can subject S perform
action A on resource R?” Some examples, of these types of
questions include: Can Bob read document /db/es/orders/
1237; Can Alice do a GET on web service endpoint /service/
auth/users?; Can Alice see user interface control /ui/wiki/
page_list/add_page?; and Can service account NBSSVCO01
update the database table /db/orders_db/customer_schema/
address? To provide responses to such questions, the access
control system may be configured with a set of rules. This set
of rules may be known as an access control policy. The
policy may be sliced into smaller chunks, such as the policy
for a particular user or the policy for a given web service
APL.

In one embodiment, a permission may be a grouping of an
action and a resource. For example, “read document /db/es/
orders/123” may be considered a permission with “read”
being the action and “document /db/es/orders/123” being the
resource. Accounting for permissions, an access control
system may provide responses to queries such as, Does Bob
have the permission “read document /db/es/orders/12377;
and Does Alice have the permission “get endpoint /service/
auth/users”? Thus, 1n one embodiment, a policy may be a
group ol permissions.

In one embodiment, if the rules forming an access control
policy are too specific then a large number of rules may be
required to be maintained. Disadvantageously, the policy
may become harder to maintain as rules continue to be
added. Auditing such a policy may also prove dithicult and
time consuming. In one embodiment, such a policy may
include many very specific rules of the form: Subject S has
permission to perform action A on resource R. Whenever a
new user 1s added to the policy, then the policy administrator
has to create a rule for every permission with which the user
should be entitled. Likewise, whenever a user 1s dropped
from the policy, the administrator has to delete the permis-
sions of that user. In one embodiment, a policy graph
representing such a policy may appear similar to policy
graph 201 in FIG. 2. In policy graph 201, Permissions 204a-f
are assigned to Users 202a-c, according to individual autho-
rization allowances. For example, as shown, User 1 2024 1s
not assigned any Permissions 204a-f and therefore i1s not
authorized to perform any actions in the system. User 2 2025
1s assigned Permissions 1, 2, 4, and 5 (204a, 2045, 2044, and
204e, respectively), while User 3 202¢ 1s assigned each of
the Permissions 204aq-f, allowing each user to perform
actions corresponding to their respective permissions.

In one embodiment, real-world policies may be orders of
magnitude more complex than that shown i policy 201.
Even 1f there were just a hundred users and a thousand
resources, and each user had access to 200 resources on
average, the policy graph would have 20,000 edges. The
policy administrator would have a diflicult time managing
the connections and adding and deleting users and resources.
The administrator may make mistakes and be swamped with

US 10,977,380 B2

S

access control i1ssues. The security auditor may have a
difficult time determining who has which permissions.
Therefore, an access control system may be more eflicient
using fewer abstract, universal rules 1nstead of many con-
crete, specific ones.

FIG. 3 1s a block diagram that illustrates an example
policy graph 301 with flat roles, 1n accordance with some
embodiments of the present disclosure. Advantageously, a
Role-Based Access Control (RBAC) system may increase

the efliciency of a system without roles, by introducing
intermediate role nodes (e.g., Role 1 3064 and Role 2 3065)

to the policy graph 301. In one embodiment, a role 1s a
related group of permissions. Users may be assigned to roles
instead of being directly granted permissions. Adding roles
the example policy 201 of FIG. 2 results 1n User 2 302bbeing
assigned to Role 1 306a, and User 3 302¢ assigned to Role
2 306b. Each being assigned to a specific role, User 1 302a

and User 2 30256 may be assigned the respective Permissions
304a-304/ assigned to each Role 306a-b. User 1 3024 1s not
assigned to a role, and therefore 1s not assigned any of
Permissions 304a-f.

In one embodiment, 1f the administrator needs to add a
new user with the same permissions as User 2, the access
control system may add one new edge (connecting the user
to Role 1 306a) to the graph. When User 2 leaves the
company, only one edge needs deletion. An access control
system supporting only one level of roles, such as that of
FIG. 3, 1s a Flat RBAC system. Access control policies may
be simplified further by introducing role hierarchies, where
roles can be assigned to other roles. FIG. 4 1s one example
of an access control system having role hierarchies.

FIG. 4 1s a block diagram that illustrates an example
policy graph 401 with a role hierarchy, 1n accordance with
some embodiments of the present disclosure. RBAC sys-
tems may include role hierarchies in a variety of ways. For
example, a Restricted Hierarchical RBAC system may sup-
port a tree of roles. In another example, a General Hierar-
chical RBAC system supports a more general directed
acyclic graph (DAG) of roles. One example of a General
Hierarchical RBAC system 1s demonstrated by policy graph
401.

In policy graph 401, to add new permissions (e.g., Per-
mission 1 404a, Permission 2 40454, Permission 4 4044,
Permission 5 404¢) for a User 3 402¢ (who already has
Permission 3 404¢ and Permission 6 404/), an access control
system may only have to grant that permission to Role 1
406a, and the User 3 assigned to Role 2 4068 will get 1t
automatically. User 2°s 4020 permissions (Permission 1
404a, Permission 2 4045b, Permission 4 404d, Permission 5
404¢) are maintained by the single assignment to Role 1
406a while User 1 402 still has zero permissions. Roles and
hierarchies of roles can shrink a policy graph by orders of
magnitude.

Role-based hierarchical access control systems may also
include Constrained RBACs and Symmetric RBACs. In
Constrained RBACs, users may be constrained to not have
certain combinations of roles. For example 1n a loan appli-
cation, users might be allowed to have either the “Loan
Oflicer” or “Loan Approver” roles, but not both at the same
time, to ensure that each loan has at least two people making,
the decision—achieving separation of duty (SOD). These
SOD constraints can be static or dynamic. In static separa-
tion of duty, a user can never have certain combinations of
roles. In dynamic separation of duty, 1if a user has a con-
flicting combination, they must choose which of the con-
flicting roles must be nactivated to resolve the conflict.

10

15

20

25

30

35

40

45

50

55

60

65

6

Symmetric RBACs have backwards and forwards sym-
metry. In a normal RBAC, one can find out which roles and
permissions a user has, but not easily discover things in the
reverse direction (e.g., given a particular permission, which
roles grant that permission and who has been assigned those
roles). A Symmetric RBAC, as described herein, 1s one that

makes it easy for security auditors to answer such questions.
In one embodiment, 1n Attribute-Based Access Control

(ABAC) systems, access control policies are composed of
rules that grant or revoke access to resources based on
various attributes. These attributes may pertain to the user,
the resource, and/or the overall context of the request. For
example, 1f the resource 1s a brokerage account, an ABAC
policy may grant access only to employees that: (1) have a
certain job category, (2) belong to the wealth management
group assigned to the account, (3) are logged 1n from an IP
address mndicating that the request 1s coming from within the
company VPN, and (4) are making the request during
ordinary business hours. In some ways, ABAC can be more
flexible than RBAC.

In one embodiment, hybrid approaches melding both
RBAC and ABAC can result in smaller policies. RBAC can
be used to model the more static attributes, while ABAC can
be used for the more dynamic ones. A variety of hybrid
access control systems may be described. In one approach,
dynamic roles may be implemented. For example, an acti-
vation expression may be supplied, referencing one or more
attributes to each role. If this expression evaluates to true,
then the role 1s active and the user gains all 1ts permissions.
If the expression evaluates to false, then the user does not
gain those permissions.

A second approach may be defined as attribute-centric. In
this approach, a user’s role names are additional boolean-
valued attributes that can be referenced like any others 1n an
ABAC system. The result of this second approach 1s essen-
tially a pure ABAC system, since access 1s not being
controlled by roles formed by collections of permissions.

A third approach may be role-centric. In this approach,
permissions are granted by roles, as in RBAC, but those
permissions are further constrained by rules referencing
attributes. For example roles assigned to a user may grant
the user ten permissions, but the user’s attributes make four
of the ten inactive.

A Tourth approach, as described herein, may be permis-
sion-centric. In this approach, roles grant users permissions
whose eflects are modified by the values of attributes of the
users. A data model describing this fourth approach 1s
described n FIG. 5.

FIG. 5§ 1s a block diagram that illustrates an example
authorization service data model 500, in accordance with
some embodiments of the present disclosure. As shown 1n
model 500, Users 502 are granted Roles 504, and the Roles
504 are granted Permissions 506. The relationship 508 from
Role 504 back to 1itself 1s the role hierarchy relationship
(e.g., roles can be granted other roles), and the relationship
512 from Organization 310 back to itself 1s the organization
hierarchy relationship.

In one embodiment, User 502 1s the subject of access
control requests. In various embodiments, the user may be a
human, a service account, or some other entity. The access
control system may store basic information on each user,
such as, for example:

id A unique identifier key (UUID)
organizationld The user’s organization’s key (UUID).

US 10,977,380 B2

7
-continued

firstName E.g., Abraham.
lastName E.g., Lincoln
email E.g., AbrahamLincoln@whitehouse.gov
code A human readable identifier, as defined by

the tenant.
locale “en_ US” (any valid Java locale)
timezone EST (any valid Java timezone name)
1sLocked True 1f the User has been locked out for some

reason (e.g., due to inactivity).
last Authenticated At The time the User last sucesstully

authenticated, or null if the User has never
logged 1n.

In other embodiments, the access control system may store
less or more information than that described above. In one
embodiment, textual fields 1 the access control system (e.g.,
displayName, firstName, lastName, email, etc.) are Uni-
code.

In one embodiment, each user (e.g., 502) belongs to one
organization (e.g., 510). Organizations may be arranged 1n
hierarchies, where each root organization 1s called a tenant.
Root organizations (tenants) may have one or more sub-
organizations beneath them. The access control system may
store basic mformation on each organization, such as, for
example:

1d A unique identifier key (UUID).

code A short organization code, e.g., “Acme.”

name The name of the organization, e.g., “Acme,
Inc.”

description A description of the organization (optional).

In one embodiment, parent/child relationships between
organizations may be managed 1n a separate SQL closure
table. Organization hierarchies of arbitrary depth are sup-
ported. The access control system described herein may be
multi-tenant: 1t can support multiple tenant organizations at
the same time, while giving each tenant the perception that
it 1s the only tenant. Each tenant has 1ts own users, roles, and
permissions, and 1s rigorously isolated from every other
tenant and has no way to tell if there are other tenants at all,
except indirectly as a function of overall system pertor-
mance. In one embodiment, there may be an exception to
this 1solation.

In one embodiment, an organization may be treated as a
special kind of role. For example, 11 you are a member of the
HR department, then you are a member of the HR role and
are permitted to read all candidate interview results and
comment on them. This technique can be supported 1n any
RBAC system as 1s, or by adding a graphical user interface
that makes some roles appear to look like organizations. In
another embodiment, a group may parallel a role, and can be
populated automatically from a directory of employee data.
In this case, when an access control policy 1s compiled, the
group/role distinction may be erased (e.g., both behave
identically).

In one embodiment, each user has a list of the organiza-
tions to which they belong. One set might refer to the single
formal orgamization the user belongs to, while another
enumerates all of the orgamizations of which the user 1s a
member, both formal and ad hoc. For example, the user’s

formal organization’s attributes could be:
userOrgld: 1140
userOrgCode: ‘OPS’

userOrgName: ‘Operations’

10

15

20

25

30

35

40

45

50

55

60

65

8

In one embodiment, the current user’s attributes may be
referred to 1n a resource path. For example, 11 there 1s a web
service that gives access to documents managed by an
organization, there could be a permission that allows all
members ol an orgamization to read that organization’s
documents by default.

In another embodiment, the access control system may
use list-valued attributes 1n resource paths. Embodiments
can also allow expressions of attributes to appear 1n resource
paths. In another embodiment, the access control system
may support built 1n functions in resource paths. Any use of
programming language expressions attributes may be used
with respect to the embodiments disclosed herein.

In one embodiment, permission constraint bodies can
reference the current user’s attributes. For example, these
two permissions grant access to all organization subtree
documents no matter what the user’s organization 1s:

May(Read, ‘/db/es’,
suborgNames}’)

May(Read, ‘/db/es’, Column, **’)

In a similar manner to the resource path above, embodiments
can use any programming language expression mvolving
attributes. In one example, suppose that some documents
have a “location” field whose value 1s a location code, and
others where the “location™ field 1s an location name. A
combined permission may look like:

Row, ‘Jorganization:

May(Read, ‘/db/es’, Row, {location: locationCodes.con-
cat(locationNames)})

May(Read, ‘/db/es’, Column, “*’)

The expression locationCodes.concat(locationNames) may
produce a list including all the user’s location names and
their codes.

In one embodiment, a permission (e.g., 506) consists of:
an action the user may take, a resource (or set of resources)
the user may take that action on, and/or an optional con-
straint on the action. Permissions in the access control
system described herein may be purely positive: a user with
no permissions at all can do nothing, while each new
permission only grants the user new authorization while not
removing any. Some examples of permission fields are:

1d A unique identifier key (UUID).

rolelD The UUID of the Role the Permission
belongs to. A permission may only belong to
one Role.

domain The Permission’s “domain” type, either
“Tabular” 1f it 1s a permission on some table-
like resource, or “HTTP™ if it 1s a permission
on some resource that looks like a URL

action The action that 1s being permitted on the
resource.

resource The hierarchical path denoting a particular
resource or subtree of resources.

constraintType An optional constraint type.

constraintBody An optional constraint that qualifies the

action permitted on the resource.

In various embodiments, some examples of permissions
are:

US 10,977,380 B2

10

Constraint Constraint

Example Domain Action Resource Type Body
GET from HTTP GET /service/auth/users n/a n/a
endpoints starting
with
/service/auth/users?
GET a Ul page? HTTP GET fui/data- n/a n/a
viewer/home-page

Read all documents Tabular READ /db/es/orders ROW {1}
in index
db/es/orders
Read all fields in Tabular READ /db/es/orders COLUMN *
documents from
index /db/es/orders

15

In one embodiment, a user having the first permission may
do GETs on all endpoints whose URIs (after a bit of
abstraction) start with ‘“/service/auth/users.” The second
permissions form a pair, and together they allow users to
read all rows and all columns from a particular tabular
structure.

In one embodiment, each permission has a domain (e.g.,

the broad family to which 1t belongs). In some embodiments,

there are two domains. In other embodiments, any number
of domains may exist. In the present example, a “Tabular”
domain may be used when the resource has a tabular
structure of some sort and 1t makes sense to control access
at the row and column level. A relational database table 1s
one example of a tabular of course, and so 1s a document
store index. When a permission 1s tabular, its action may be
one of the “CRUD” wverbs, either *“Create”, “Read”,
“Update”, or “Delete,” and 1t may have a constraint type of

“ROW” or “COLUMN?”. The “HTTP” domain may be used

when the resource can be viewed as a unitary whole and the
user 1s being granted permission to operate on 1t 1n its
entirety. Its resource can be thought of as a URI. The
permitted actions may be the HTTP verbs—“GET™, “PUT”,
“POST”, “PATCH”, “DELFETE”, and “HEAD,” and there is
no constraint. In one embodiment 1t may seem that limiting
the verbs to HT'TP 1s too restrictive, but advantageously,
because HTTP supports the REST architectural style 1t has
a lot of expressive power. For 1nstance, a set of Ul widget
permissions maybe modeled by coming up with a REST1ul
resource design that organizes them 1n a hierarchy, say by
application, then page, then component hierarchy on the
page. In one embodiment, granting a user the “GET” per-
mission on a component may mean that component 1s
cnabled, otherwise 1t may be disabled.

In one embodiment, an Action 1s a verb. As discussed
herein, Tabular permissions may support CRUD verbs and
HTTP permissions support HITP methods. The access
control system herein does may not impose semantics on the
actions (e.g., other than to limit them based on the domain
type). To the access control system, actions may simply be
strings.

In one embodiment, a resource of a permission may be a
path string addressing some entity or aggregate entity of an
application (e.g., /ui/checkout/order_review_page/buttons/
one_click). Resources are described in greater detail below.
In one embodiment, tabular domain permissions may be
constrained as to which rows and columns may be read. The
row and column constraint languages are also described in
turther detail below.

In one embodiment, a role includes the following fields:

1d A unique 1dentifier key (UUID)
20 name The name of the role, e.g., “Loan Officer.”
description A description of the role (optional)

In one embodiment, a role may have many permissions
granted to 1t, and many roles granted to 1t. A permission may

25 be shared by many roles, and a role may be granted to many
roles.

FIG. 6 1s a block diagram that illustrates an example
resource hierarchy 601, in accordance with some embodi-

ments of the present disclosure. In FIG. 6, example resource
39 hierarchy 601 1s shown to include nodes/602, /a 604, /b 606,

/c 608, /a/Alice 610, /a/Bob 612, /a/Cara 614, /a/Alice/orders
616, /a/Bob/orders 618, /a/Cara/orders 620, /c/Ohio 622,

and/c/Utah 624. In one embodiment, a resource 1s a slash-
separated path, ¢.g., a Unix file name or a key 1n a key-value
store. To the access control system described herein, a
resource 1s simply a path. In one embodiment, resources do
not have to correspond to anything concrete. Some possible
resources may 1include: /db/es/my_index/my_document-
_type; /service/family/users/Bob/children/Rachel/pets/Clo-
ver; and /ui/checkout/order_review_page/buttons/one_click.
40 Permissions can be used to reference resources at any
level of granularity. It 1s possible to grant access to every
row and column of an entire database all at once, and 1t 1s
also possible to grant access to individual table columns or
particular table rows based on their unique key values. To
45 keep policies small, expressive and eflicient, the access
control system described herein introduces various mecha-
nisms for addressing groups of resources.
In one embodiment, a permission may be created that
grants access to a subtree ol resources instead of one
50 permission per resource in that tree. For example, to allow
a user to wear any clown nose, the access control policy may
set the permission resource to /db/costume/clown/noses. Or,
to enable the wearing of, any clown costume components,
the access control system may set the permission resource to
55 /db/costume/clown. Turning to the example resource hier-
archy 601, to grant a permission on the subtree containing /¢
608, /Ohio 622, and /Utah 624, the access control system
may set the permission’s resource to /¢ 608.
In another embodiment, the access control system
60 described herein may utilize wildcard segments. The access
control system may use wildcards 1n resource names, which
may be especially usetul for granting permissions to web
service endpoints, for example. To match URI path segments
containing arbitrary characters, the access control system
65 may use the wildcard { }. For example, the access control
system 1tsell may have one endpoint for getting a user’s
permissions and another for getting the user’s roles: (1)

35

US 10,977,380 B2

11

fusers/{userld}/permissions and (2) /users/{userld}/roles.
The access control system may also have endpoints for
returning information on a particular user (e.g., email):
fusers/{userld}, another for getting pages of user informa-
tion: /users, and another for getting a user’s compiled policy:
fusers/{userld}/policy.

In one embodiment, to grant access to just the user roles
endpoint without the others the access control system may
use the resource: /users/{ }/roles. To make wildcard
resources more descriptive the access control system can
understand any text between the braces. For example, these
resources are all the same: /users/{ }/roles; /users/{userld}/
roles; and /users/{user UUID}/roles. Turning to example
resource hierarchy 601, to select the nodes /Alice 610, /Bob
612, /Cara 614, /Alice/orders 616, /Bob/orders 618, and
/Cara/orders 620, the access control system may use /a/{us-
erld} (or just /a/{ }).

In another embodiment, the access control system
described herein may utilize attributes. The access control
system’s resources and constraints can make reference to
attributes of a user and the user’s organization. In one
example 1n which the access control system i1s to grant each
user the right to see their own roles but not the roles of other
users, the access control system may insert a reference to a
user-specific attribute in the resource: /users/${userld}/
roles.

When 1t comes time for this permission to be checked in
an access control request, the string ${userld} may be
replaced by the current user’s actual id value. One user
would be granted access to only: /users/5e¢670257-bd15-
4175-91c¢3-5tedd02149d1/roles, while another would be
granted access to only: /users/c828d3el-86e3-4a36-ac02-
bfed02aadllb/roles. Subtree references, wildcards, and
attributes allow the access control system described herein
to carefully control the size of an access control policy.

In one embodiment, the total namespace containing all
resources 1n a policy should be properly segregated to
leverage subtree and wildcard references. In the previous
example, access was granted to every user’s subtree. To
grant only the current user’s subtree, the access control
polity may use /a/${userld}: (e.g., resulting in /Bob 612 and
/Bob/orders 618 being selected).

In one embodiment, the access control system may allow
tor the specification of a list of possible values for a resource
segment. For example, comma-separated values inside a pair
of square brackets may be used. For example, the resource
/a/[Alice,Cara,Xavier,Yolanda,Z¢lda] may match two sub-
trees of example hierarchy 601 (e.g., /Alice 610, Alice/
orders 616, /Cara 614, and Cara/orders 620).

In one embodiment, a resource may include regular
expression segments. These may be delimited by a leading
r{and a trailing}, for example. In this embodiment, the
resource /a/r{ Alice|CaralXavier| Yolandal Zelda} may match
the same two subtrees of example hierarchy 601 (e.g., /Alice
610, Alice/orders 616, /Cara 614, and Cara/orders 620).

In one embodiment, a constraint identifies which part of
a resource a user may act on. In one embodiment, permis-
sions 1n the HTTP domain do not have constraints, meaning
the user can act on the whole resource (e.g., endpoint, user
interface component, etc.). In another embodiment, permis-
sions in the tabular domain do have constraints—each
tabular permission has either a column constraint or a row
constraint.

In one embodiment, by default, a user 1s not permitted to
read or update any column in a row (or document) in a
tabular resource. Column access may be granted through a
permission with a column constraints. In a column con-

10

15

20

25

30

35

40

45

50

55

60

65

12

straint, the action must be READ or UPDATE (CREATE
and DELETE don’t apply). The constraint itself may be a

string that takes one of the following forms:

Coumn Constraint Notes

A, b.bl, ¢ A list of the columns the user 1s permited to
read (or update). Here the user i1s granted
access to a, b.bl, and ¢. The dot notation
supports nested aggregates in document
stores.

* A shorthand name for “all columns.”

-d, -e. -1.11 A shorthad for “all comumns except.”

To determine which columns a user had access to 1n a tabular
resource (e.g., ‘R’): the access control system may gather all
permissions the user holds through any role where: (1) the
permission’s constraint 1s a column constraint; (2) the per-
mission’s action 1s the desired operation, e.g., “READ”’; and
(3) the permission’s resource name “matches” R. For
example, 1I R 1s *“/sales/orders/order_item,” then each
matching permission will have a resource name of “/sales/
orders/order_item,” ““/sales/orders,” or ‘““/sales.” The access
control system may then merge these matching permissions
into one, whose column constraint 1s the combination of the
individual column constraints. For example, 11 one permis-
sion grants READ access to fields a, b, and ¢, while a second
grants READ access to a, d, and e, then the combined
permission grants READ access to a, b, ¢, d, and e. If there
are no matching permissions, the user 1s not allowed to read
any columns.

The following on-limiting examples demonstrate how two
column constraints may be added together:

Column
Contraint 2

Column

Contraint 1 Merged Contraint Notes

If one column
constraint grants all
access, 1t does not
matter what the other
constraint grants.
Two grants of
explicit columns are
unioned.

Two “all-but” grants
are intersectioned.
Here “b’ 1s the only
column not granted
in the combined
constraint.

One constraint gives
access to a single
column, and another
grants access to all
other columns, so all
columns are granted.
Another example of
an explicit list of
columns being added
to an “all-but” grant.

8 Anything 8

a, b

a, b, c

-a, -b -b, -c

a, b, c -a, -b, -C

In one embodiment, by default a user 1s not permitted to
read or modity any rows (documents) 1n a tabular resource.
Row access may be granted through row constraints. A row
constraint may be a serialized Javascript object (aka, map or
dictionary). Each key/value pair in the constraint maps a
column name to a condition on that column. For instance
{foo: 1} grants access to every row (document) whose foo
column has the value 1. A row constraint may be analogous
to a SQL WHERE clause. For example, to grant the user the

US 10,977,380 B2

13

right to read rows where the organizationCode column has
a particular value, and the customerCode column has
another value: {organizationCode: ‘ACME’, customerCode:
‘12341234°}. This corresponds to the SQL condition:
(organizationCode="ACME"’ AND
customerCode=12341234"). Any client of the access con-
trol system making a SQL query on this table must therefore
ensure this SQL condition 1s AND-ed to the WHERE clause.

When determining which rows a user has access to 1 a
particular tabular resource (e.g., ‘R’): the access control
system gathers all permissions that this user holds through
any role where: (1) the permission’s resource name
“matches” R (for example, 1f R 1s ““/sales/orders/order_
item”, then each matching permission will have a resource
names of ‘/sales/orders/order item,” ‘/sales/orders,” or
“/sales™); (2) the permission’s constraint 1s a row constraint;
and (3) the permission’s action 1s the desired operation, eg,
“READ.”

The access control system then tries to merge the match-
ing permissions by coalescing their constraints. For
example, 11 one of the permissions 1s unconstrained, then all

Attribute Name

userld

userCode

organizationlD

10

15

20

organizationCode

organizationName

the other permissions can be ignored. I two permissions
have i1dentical constraints, one can be discarded. If one
constraint 1s more restrictive than another, 1t can be dis-
carded. The result 1s a set of optimized row permissions. If
there are no matching permissions, the user may not be
allowed to read any rows.

In one example, a tenant has a tabular resource containing,
rows from many organizations, and 1t wants to restrict access
to those rows based on the user’s organization code. A user

from organization “a” would only be able to read rows
” while a user from

marked with organization code “a

organization “x”” would only be able to read the “x” rows. In
one embodiment, the access control system may allow for
the definition of a role for each organization. Users in the
“OrganizationA” role would have row permission: {organi-
zationCode: ‘a’} and users in the “OrganizationX” role
would have: {organizationCode: ‘x’}. Disadvantageously,
this may results in the creation of a large number roles and
permissions. It also may require a lot of administration to
ensure that organizational changes are reflected in the access
control policy’s roles and user assignments. Advanta-
geously, 1n another embodiment, the policy may be simpli-
fied and rendered more eflicient by allowing 1t to reference
user-specific attributes such as the organization code. In this
embodiment, there may be only one role needed: “Organi-
zationReader”, with the row permission: {organization-
Code: organizationCode}. Advantageously, no matter what
organization a user moves to, the policy adapts automati-

cally.

14

In one embodiment, row constraints may be free to
leverage more of Javascript’s power. For instance, 11 orga-
nization codes are sometimes stored with their proper case
intact, and sometimes stored in lower case, this may be
captured with the following row constraint: {locationCode:
user.location.codes.join(‘1”).toLowerCase().split(‘I”)}. In
this embodiment, the user may read documents whose
location code 1s any of the user’s configured location codes
converted to lower case.

In one embodiment, attributes 1n the access control sys-
tem may have a variety of characteristics. For example,
attributes may grouped into three types: (1) standard attri-
butes for the current user and their organization, managed by
the access control system; (2) optional named bundles of
user attributes, managed by soiftware outside of the access
control system (or some component thereol); and (3)
optional named bundles of organization attributes, also
managed by software external to the access control system

(or some component thereol). The following are non-limit-
ing examples ol standard attributes:

Sample Value Meaning

An Auth Service UUID
uniquely identifying the
current user.

A unique code identifying
the current user. The code
may be an email address or
some other value assigned
by the user’s identity
provider (IDP).

The Auth Service UUID
for the user organization.
A code 1dentifying the
user’s organization.

The human oriented name
of the user’s organization

“27825440-92e3-4e9b-b7bt-5c04dae52eaa’™

“bob@email.example.com”

“19d22251-7¢c9e-490¢c-aal7-26004e21466d”
“Example”

“Example Technologies, Inc.”

Optional attributes for the current user and their organization

? are described with respect to FIGS. 7A and 7B.

45

50

55

60

65

FIG. 7A 1s a block diagram that illustrates an example
authentication service user and orgamization attributes data
model 700, 1n accordance with some embodiments of the
present disclosure. In one embodiment, the access control
service does not need to be the only source of user and
organization attributes. Diflerent applications can create
their own bundles of attributes. For example, an equipment
rental application may need to create user attributes speci-

tying which clients each user i1s set up to rent from, and
which clients each user 1s allowed to administer. To specily
these attributes, the rental application may manage a group
of “rental” attributes associated with each user. Likewise,
applications can manage groups of attributes at the organi-
zation level. These groups may be called namespaces. FIG.
7A shows part of the access control data model extended
with a User 702, User Attributes 704, Organization 706, and
Organization Attributes 708.

FIG. 7B 1s a block diagram 701 that illustrates example
user attributes, 1n accordance with some embodiments of the
present disclosure. FIG. 7B shows two users (e.g., Alice 703
and Bob 705) with attribute namespaces (e.g., 707 and 709,
respectively). The user Bob 705 has a group of attributes in
the “rental” namespace 709. Bob 1s only allowed to rent
from the client whose code 1s “c001,” and he 1s not a rental
administrator at any client. Alice 703 also has a group of
attributes 1n the “rental” namespace 707. She 1s an admin-

US 10,977,380 B2

15

1strator at two clients, and 1s also a customer of three other
clients. In addition, Alice 703 has a collection of attributes
in the “app_store” namespace 711. In one embodiment, each
namespace 1s represented with a JSON object consisting of
zero or more attribute name/value pairs. In one embodiment,
attribute names are strings and their values can be numbers,
strings, lists, and sub-objects.

In one embodiment, standard attributes have simple
names like userld or tenantCode and optional attributes have
compound names. The first segment may be the user or
organization, the second may be the namespace, and the
third may be the attribute within the namespace. So, 1n FIG.
7B, the list of clients the current user can rent from 1s
indicated by user.rental.client_codes.

In one embodiment, a policy 1s a collection of related
permissions. It has been organized, compressed, and opti-
mized so that a Policy Enforcement Point (PEP) can get 1t
from the access control system more quickly, and so that the
PEP’s questions to 1t can be answered in a time-eflective
manner. The access control system may store information
about organizations, users, roles, and permissions and can
form access control policies out of this data. Policy enforce-
ment may be performed by Policy Enforcement Points
(PEPs) (e.g., a service runming inside or outside of the access
control system). A distributed system may have many PEPs.

In one embodiment, there are two kinds of PEPs {for
databases. The first type 1s an Internal PEP: 1t 1s part of the
database system itself. The second 1s an External PEP: it 1s
part of the process accessing the database. An internal PEP
may require less work to use and may be more diflicult to
bypass. An external PEP may be harder to write and easier
to bypass. External PEPs are described with respect to FIG.
8 A and internal PEPs are described with respect to FIG. 8B.

FIG. 8A 1s a block diagram 800 that illustrates an example
external policy enforcement point 802, 1n accordance with
some embodiments of the present disclosure. In the example
FI1G. 8A, the Web Service 804 wants to make a database read
(e.g., from Access Controlled Database 806) request on
behalf of the eflective user (Bob). In this example, the Web
Service 804 requests Bob’s access control policy for that
database 806 from the Auth Service 808 client library. The
client library translates this call into the corresponding Auth
Service HTTP request. The Auth Service 808 queries its
database 810 for all the relevant permissions, e.g., the ones
granted to user Bob, pertaining to the tabular resource
“/db/ordersm,” and granting the READ action. The Auth
Service 808 compiles the selected permissions into Bob’s
policy for that resource and action. This compilation may
include: collecting the permissions by action and type of
constraint; stripping off unnecessary parts of the permissions
(e.g., imestamps and UUID); subdividing each set of per-
missions by the resource they apply to; propagating permis-
sions down the resource tree (e.g., 1if Bob has a permission
for resource /db/orders/a, 1t also applies to /deb/orders/a/b);
and optimizing each set of permissions by striking out
duplicates and merging less powertul permissions into more
poweriul ones.

The Auth Service 808 then serializes the optimized policy
into JSON and returns it as the response to the Web Service’s
804 request. The Web Service 804 (with the help of a future
Auth Service client library) gets Bob’s access control grants
from the Policy, and uses them to restrict queries 1t makes on
the access-controlled database on Bob’s behalf. This may
involve: modifying the SELECT clause (or No-SQL equiva-
lent) to only read the columns Bob has access to and
AND-1ng the WHERE clause (or equivalent) with Bob’s

row constraints.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 8B 1s a block diagram 801 that 1llustrates an example
internal policy enforcement point 803, 1n accordance with
some embodiments of the present disclosure. In one embodi-
ment the Auth Service 805 has facilities for mapping user
policies into internal PEP 803 policies and transmitting them
to the internal PEP 803. In this scenario, the Auth Service
803 runs a batch job periodically to push each user’s policy
to PEP 803. This batch job iterates over each user and: asks
the Auth Service 8035 to query its database 807 for all the
relevant permissions: the ones granted to that user, pertain-
ing to the tabular resource ““/db/es” (809), and granting the
READ action (PEP 803 may be read-only); asks the Auth
Service 805 to compile the selected permissions the user’s
policy (as described above); maps the Auth Service 805
policy into an PEP 803 policy and sends that policy to PEP
803. When the Web Service 811 makes a query on PEP 803
it needs to identily the eflective user via a header on the
query request. PEP 803 enforces the policy.

In one embodiment, an Auth Service 805 policy 1s an
outer map (e.g., object) whose attributes have objects (e.g.,
maps) as their values. The outer map (e.g., object) may have
keys that indicate the action and the constraint type. The
following example shows two keys, both pertaining to

READ actions:

{ ‘READ_ROW":
{ */db/orders/a’: [{orgCode:*11.99°}],
‘/db/orders/a/b’: [{orgCode:[*IL0O1°,°IL02°,*IL03",* IL99°]}] }
‘READ__COLUMN’:
{ */db/orders/a’: [‘-commission,-price’],
‘/db/orders/a/b’: [“*] }

The first key gathers all the row constraints for READs
while the second gathers all the column constraints. Each
group ol constraints 1s organized with an mner Map (Ob-
ject). The imner map’s keys are resource names, and the
values are the lists of constraints to apply on each resource
name. In the above example, there are two READ_ROW
constramnts. The first says that throughout the resource
subtree rooted at /db/orders/a the user may read any row
(e.g., document) whose orgCode field 1s ‘I1LL99°. The second
says that 1n the smaller subtree rooted at /db/orders/a/b the
user may read any row whose orgCode 1s either ‘ILO1’ or
‘11.99°. Likewise there are two READ COLUMN con-
straints: at /db/orders/a the user can read any field except
commission and price, while at /db/orders/b the user can
read any field period.

When looking up permissions in a policy, the search may
start at the deepest resource level (e.g., /db/orders/a/b/c) and
then see 11 there are any constraints at that level. If not, the
search continues looking for the next higher level (/db/
orders/a/b), and so on until constraints are found or the
topmost level of the resource 1s reached without finding
constraints for i1t. In one embodiment, the search for row
constraints and the search for column constraints may be
conducted 1independently.

FIG. 9 15 a flow diagram of a method 900 of hybnid access
control, 1n accordance with some embodiments. The method
900 may be performed by processing logic that comprises
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (e.g., instructions run on a
processing device to perform hardware simulation), or a
combination thereof.

Referring to FIG. 9, at block 902 processing logic
receives, from a client device, a request for a resource of a
computer system. In one embodiment, the request for the

US 10,977,380 B2

17

resource includes a resource path. In another embodiment,
the resource path includes at least one of: a variable or a
textual pattern. At block 904, processing logic determines
one or more roles of a user associated with the client device,
at block 906, processing logic determines one or more
attributes of the user, and at block 908, processing logic
determines one or more attributes of the resource. In one
embodiment, the one or more attributes of the user and the
one or more attributes of the resource correspond to one or
more key value pairs.

In one embodiment, at block 910, processing logic deter-
mines an access permission based on the one or more roles
of the user and the resource. At block 912, processing logic
generates, by a processing device, a modified access per-
mission by moditying the access permission based on at
least one of: the one or more attributes of the user or the one
or more attributes of the resource. In one embodiment, the
modified access permission identifies a resource expression
and an action. In another embodiment, the modified access
permission 1dentifies a constraint, which limits access to a
subpart of the resource. In one embodiment, the constraint
includes at least one of: a variable or a textual pattern.

At block 914, processing logic provides or denies access
to the resource of the computer system based on the modi-
fied access permission. For example, 1f it 1s determined
based on the modified access permission that the user 1s
authorized to access the resource, processing logic will
provide the access. If i1t 1s determined based on the modified
access permission that the user 1s not authorized to access
the resource, processing logic will deny the access.

Optionally, at block 916, processing logic generates an
access policy comprising the modified access permission,
and, at block 918, processing logic provides the access
policy to the computer system.

FIG. 10 1s a flow diagram of a method 1000 of organi-
zation based access control, in accordance with some
embodiments. The method 1000 may be performed by
processing logic that comprises hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soit-
ware (e.g., instructions run on a processing device to per-
form hardware simulation), or a combination thereof.

Referring to FIG. 10, at block 1002 processing logic
receives a request for a resource of a computer system. In
one embodiment, the request 1s recerved from a client device
of the computer system. In another embodiment, the request
1s recerved from a client device external to the computer
system. The request may include a resource path, and
wherein the resource path comprises at least one of: a
variable or a textual pattern, as described herein.

At block 1004, processing logic determines one or more
attributes of a user associated with the request, wherein the
one or more attributes are based on a status of the user 1n an
organization hierarchy, the organization hierarchy compris-
Ing one or more sub organizations corresponding to the user.
In one embodiment, the one or more attributes are not roles
in the access control system. The one or more attributes
based on the status of the user 1n an organization hierarchy
may be a separate and distinct classification of organization-
based attributes, compared to other attributes of the access
control system. In one embodiment, the organization hier-
archy 1s represented by a tree-type data structure. In another
embodiment, the organization hierarchy 1s represented by a
directed acyclic graph data structure. In a variety of other
embodiments, the organization hierarchy may be any other
data structure capable of describing the organization hier-
archy.

10

15

20

25

30

35

40

45

50

55

60

65

18

At block 1006, processing logic determines that the
request comprises one or more attribute names. In one
embodiment, attribute names may be a string of text (e.g., a
variable, expression, pattern, etc.) that represents a classifi-
cation of attribute to be inserted into a resource path of the
request, as described herein. In one embodiment, the request
for the resource includes a resource path. In one embodi-
ment, the resource path includes at least one of: a variable
or a textual pattern, as described herein.

At block 1008, 1n response to receiving the request,
processing logic generates, by a processing device, an access
permission based on the organization hierarchy correspond-
ing to the user and the one or more attribute names. In one
embodiment, processing logic generates the access permis-
sion by replacing the one or more attribute names with the
one or more attributes. The access permission may i1dentity
a resource expression, an action, and a constraint, wherein
the constraint limits access to a subpart of the resource.

At block 1010, processing logic provides or denies access
to the resource of the computer system based on the access
permission. Optionally, processing logic may generate an
access policy comprising the access permission and provide
the access policy to the computer system. It should be noted
that the above operations may be performed 1n conjunction
with a hybrid role and attribute based access control system,
a strictly access based control system, or any other access
control system that allows for the distinct definition of
organizational attributes.

FIG. 11 1s a block diagram of an example computing
device 1100 that may perform one or more of the operations
described herein, 1n accordance with some embodiments.
Computing device 1100 may be connected to other comput-
ing devices 1 a LAN, an intranet, an extranet, and/or the
Internet. The computing device may operate in the capacity
of a server machine in client-server network environment or
in the capacity of a client 1n a peer-to-peer network envi-
ronment. The computing device may be provided by a
personal computer (PC), a set-top box (STB), a server, a
network router, switch or bridge, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specily actions to be taken by that machine. Further, while
only a single computing device i1s illustrated, the term
“computing device” shall also be taken to include any
collection of computing devices that individually or jointly
execute a set (or multiple sets) of instructions to perform the
methods discussed herein.

The example computing device 1100 may include a
processing device (e.g., a general purpose processor, a PLD,
ctc.) 1102, a main memory 1104 (e.g., synchronous dynamic
random access memory (DRAM), read-only memory
(ROM)), a static memory 1106 (e.g., flash memory and a
data storage device 1118), which may communicate with
cach other via a bus 1130.

Processing device 1102 may be provided by one or more
general-purpose processing devices such as a microproces-
sor, central processing unit, or the like. In an illustrative
example, processing device 1102 may comprise a complex
instruction set computing (CISC) microprocessor, reduced
instruction set computing (RISC) microprocessor, very long
istruction word (VLIW) microprocessor, or a processor
implementing other instruction sets or processors imple-
menting a combination of instruction sets. Processing device
1102 may also comprise one or more special-purpose pro-
cessing devices such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the
like. The processing device 1102 may be configured to

US 10,977,380 B2

19

execute the operations described herein, 1n accordance with
one or more aspects of the present disclosure, for performing
the operations and steps discussed herein.

Computing device 1100 may further include a network
interface device 1108 which may communicate with a
network 1120. The computing device 1100 also may include
a video display umit 1110 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 1112 (e.g., a keyboard), a cursor control device 1114
(e.g.,a mouse) and an acoustic signal generation device 1116
(c.g., a speaker). In one embodiment, video display unit
1110, alphanumeric input device 1112, and cursor control
device 1114 may be combined into a single component or
device (e.g., an LCD touch screen).

Data storage device 1118 may include a computer-read-
able storage medium 1128 on which may be stored one or
more sets of instructions, e.g., mstructions for carrying out
the operations described herein, 1n accordance with one or
more aspects of the present disclosure. Instructions 1126
implementing access control components, etc., may also
reside, completely or at least partially, within main memory
1104 and/or within processing device 1102 during execution
thereol by computing device 1100, main memory 1104 and
processing device 1102 also constituting computer-readable
media. The instructions may further be transmitted or
received over a network 1120 via network interface device
1108.

While computer-readable storage medium 1128 1s shown
in an illustrative example to be a single medium, the term
“computer-readable storage medium™ should be taken to
include a single medium or multiple media (e.g., a central-
1zed or distributed database and/or associated caches and
servers) that store the one or more sets of 1structions. The
term ‘“‘computer-readable storage medium™ shall also be
taken to include any medium that 1s capable of storing,
encoding or carrying a set of instructions for execution by
the machine and that cause the machine to perform the
methods described herein. The term “computer-readable
storage medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, optical media and
magnetic media.

Unless specifically stated otherwise, terms such as “deter-
mimng,” “generating,” “storing,” “calculating,” “request-
ing,” “allowing,” “preventing,” or the like, refer to actions
and processes performed or implemented by computing
devices that manipulates and transforms data represented as
physical (electronic) quantities within the computing
device’s registers and memories into other data similarly
represented as physical quantities within the computing
device memories or registers or other such information
storage, transmission or display devices. Also, the terms
“first,” “second,” “‘third,” “fourth,” etc., as used herein are
meant as labels to distinguish among different elements and
may not necessarily have an ordinal meaning according to
theirr numerical designation.

Examples described herein also relate to an apparatus for
performing the operations described herein. This apparatus
may be specially constructed for the required purposes, or it
may comprise a general purpose computing device selec-
tively programmed by a computer program stored in the
computing device. Such a computer program may be stored
in a computer-readable non-transitory storage medium.

The methods and illustrative examples described herein
are not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used 1n
accordance with the teachings described herein, or 1t may
prove convenient to construct more specialized apparatus to

2? e bl S Y 4 27 L

10

15

20

25

30

35

40

45

50

55

60

65

20

perform the required method steps. The required structure
for a variety of these systems will appear as set forth 1n the
description above.

The above description 1s 1ntended to be illustrative, and
not restrictive. Although the present disclosure has been
described with references to specific illustrative examples, 1t
will be recognized that the present disclosure 1s not limited
to the examples described. The scope of the disclosure
should be determined with reference to the following claims,
along with the full scope of equivalents to which the claims
are entitled.

As used herein, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under-
stood that the terms “comprises”, “comprising”, “includes”,
and/or “including”, when used herein, specity the presence
of stated features, integers, steps, operations, clements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
Therefore, the terminology used herein 1s for the purpose of
describing particular embodiments only and 1s not intended
to be limiting.

It should also be noted that 1n some alternative imple-
mentations, the functions/acts noted may occur out of the
order noted 1n the figures. For example, two figures shown
In succession may in fact be executed substantially concur-
rently or may sometimes be executed in the reverse order,
depending upon the functionality/acts involved.

Although the method operations were described 1n a
specific order, 1t should be understood that other operations
may be performed 1n between described operations,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed 1n a system which allows the occurrence of the
processing operations at various intervals associated with
the processing.

Various units, circuits, or other components may be
described or claimed as “configured to” or “configurable to™
perform a task or tasks. In such contexts, the phrase “con-
figured to” or “configurable to” 1s used to connote structure
by 1indicating that the units/circuits/components include
structure (e.g., circuitry) that performs the task or tasks
during operation. As such, the unit/circuit/component can be
said to be configured to perform the task, or configurable to
perform the task, even when the specified unit/circuit/com-
ponent 1s not currently operational (e.g., 1s not on). The
units/circuits/components used with the “configured to” or
“configurable to” language include hardware—ifor example,
circuits, memory storing program instructions executable to
implement the operation, etc. Reciting that a unit/circuit/
component 1s “configured to” perform one or more tasks, or
1s “configurable to” perform one or more tasks, 1s expressly
intended not to invoke 35 U.S.C. 112, sixth paragraph, for
that unit/circuit/component. Additionally, “configured to™ or
“configurable to” can include generic structure (e.g., generic
circuitry) that 1s manipulated by software and/or firmware
(e.g., an FPGA or a general-purpose processor executing
soltware) to operate 1n manner that 1s capable of performing
the task(s) at 1ssue. “Configured to” may also include
adapting a manufacturing process (e.g., a semiconductor
fabrication facility) to fabricate devices (e.g., integrated
circuits) that are adapted to implement or perform one or
more tasks. “Configurable t0” 1s expressly mtended not to
apply to blank media, an unprogrammed processor or unpro-
grammed generic computer, or an unprogrammed program-
mable logic device, programmable gate array, or other

US 10,977,380 B2

21

unprogrammed device, unless accompanied by programmed
media that confers the ability to the unprogrammed device
to be configured to perform the disclosed function(s).

The foregoing description, for the purpose of explanation,
has been described with reference to specific embodiments.
However, the 1llustrative discussions above are not intended
to be exhaustive or to limait the invention to the precise forms
disclosed. Many modifications and variations are possible 1in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
embodiments and 1ts practical applications, to thereby
cnable others skilled 1n the art to best utilize the embodi-
ments and various modifications as may be suited to the
particular use contemplated. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the invention 1s not to be limited to the details

given herein, but may be modified within the scope and
equivalents of the appended claims.

What 1s claimed 1s:

1. A computer-implemented method comprising:

receiving, from a client device, a request to access a

resource of a computer system;
determining one or more roles of a user associated with
the client device, wherein each of the one or more roles
has a corresponding set of one or more permissions;

based on the one or more roles of the user, identifying, as
being applicable to the received request, at least one
predefined access permission for performing a given
action on a given resource, wherein the predefined
access permission comprises (1) a definition of the
given action and (11) a definition of the given resource,
and wherein at least one of the definition of the given
action or the definition of the given resource includes a
given attribute name that serves as a placeholder to be
replaced by a corresponding attribute value prior to
using the predefined access permission to make an
access control decision;

dynamically determining an attribute value that corre-

sponds to the given attribute name included in the
predefined access permission, wherein the dynami-
cally-determined attribute value comprises at least one
of (1) information about the user associated with the
client device from which the request was received, (11)
information about the resource for which access 1s
being requested, or (111) contextual information about
the receipt of request;

dynamically generating a modified access permission that

1s specific to the recerved request by replacing the given
attribute name included in the predefined access per-
mission with the dynamically-determined attribute
value; and

providing or denying access to the resource of the com-

puter system based on the modified access permission.

2. The computer-implemented method of claim 1, further
comprising:

generating an access policy comprising the modified

access permission; and

providing the access policy to the computer system.

3. The computer-implemented method of claim 1,
wherein the request for the resource comprises a resource
path.

4. The computer-implemented method of claim 1,
wherein the defimtion of the given action comprises a
constraint on the given action that 1s permitted to be per-
formed on the given resource.

10

15

20

25

30

35

40

45

50

55

60

65

22

5. The computer-implemented method of claim 1,
wherein the predefined permission 1s retained for use in
handling future access requests.

6. The computer-implemented method of claim 1,
wherein the information about the user associated with the
client device from which the request was received comprises
an 1dentifier of the user.

7. The computer-implemented method of claim 1,
wherein the imnformation about the user associated with the
client device from which the request was received comprises
information about a status of the user in an organizational
hierarchy, wherein the status of the user 1n the organizational
hierarchy 1s distinct from the one or more roles of the user.

8. The computer-implemented method of claim 7,
wherein the mformation about the status of the user 1n the
organizational hierarchy comprises an indication of one or
both of an organization within the organizational hierarchy
to which the user belongs or a sub organization within the
organizational hierarchy to which the user belongs.

9. The computer-implemented method of claim 7,
wherein the organizational hierarchy 1s represented by one
of (1) a tree-type data structure or (11) a directed acyclic graph
(DAC)-type data structure.

10. The computer-implemented method of claim 1,
wherein the given attribute name comprises a {irst attribute
name 1n an attribute-based expression that also includes at
least a second attribute name, wherein the method further
comprises dynamically determining an attribute value that
corresponds to the second attribute name, and wherein
dynamically generating the modified access permission fur-
ther comprises replacing the second attribute name 1n the
attribute-based expression with the dynamically-determined
attribute value that corresponds to the second attribute name.

11. The computer-implemented method of claim 1,
wherein the contextual information about the receipt of
request comprises information about when the request was
received.

12. A computing platform comprising:

a network interface:

at least one processor; and

at least one computer-readable storage medium compris-

ing program instructions that are executable by the at

least one processor such that the computing platiform 1s

configured to:

recerve, from a client device via the network interface,
a request to access a resource of a computer system;

determine one or more roles of a user associated with
the client device, wherein each of the one or more
roles has a corresponding set of one or more per-
missions;

based on the one or more roles of the user, 1dentily, as
being applicable to the received request, at least one
predefined access permission for performing a given
action on a given resource, wherein the predefined
access permission comprises (1) a defimition of the
given action and (1) a definition of the given
resource, and wherein at least one of the definition of
the given action or the definition of the given
resource includes a given attribute name that serves
as a placeholder to be replaced by a corresponding
attribute value prior to using the predefined access
permission to make an access control decision;

dynamically determine an attribute value that corre-
sponds to the given attribute name included in the
predefined access permission, wherein the dynami-
cally-determined attribute value comprises at least
one of (1) information about the user associated with

US 10,977,380 B2

23

the client device from which the request was
recerved, (11) mformation about the resource for
which access 1s being requested, or (111) contextual
information about the receipt of request;

dynamically generate a modified access permission that
1s specific to the received request by replacing the
given attribute name included in the predefined
access permission with the dynamically-determined
attribute value; and

provide or deny access to the resource of the computer
system based on the modified access permission.

13. The computing platform of claim 12, wherein the at
least one computer-readable storage medium further com-
prises program instructions that are executable by the at least
one processor such that the computing platform 1s config-
ured to:

generate an access policy comprising the modified access

permission; and

provide the access policy to the computer system.

14. The computing platform of claim 12, wherein the
request for the resource comprises a resource path.

15. The computing platform of claam 12, wherein the
definition of the given action comprises a constraint on the
given action that 1s permitted to be performed on the given
resource.

16. The computing platform of claim 12, the predefined
permission 1s retained for use in handling future access
requests.

17. The computing platform of claam 12, wherein the
information about the user associated with the client device
from which the request was received comprises an identifier
of the user.

18. The computing platform of claim 12, wherein the
information about the user associated with the client device
from which the request was received comprises information
about a status of the user in an organizational hierarchy,
wherein the status of the user in the organizational hierarchy
1s distinct from the one or more roles of the user.

19. The computing platform of claim 18, wherein the
information about the status of the user 1n the organizational
hierarchy comprises an indication of one or both of an
organization within the organizational hierarchy to which
the user belongs or a sub organization within the organiza-
tional hierarchy to which the user belongs.

20. The computing platform of claim 18, wherein the
organizational hierarchy 1s represented by one of (1) a
tree-type data structure or (11) a directed acyclic graph
(DAC)-type data structure.

21. The computing platform of claim 12, wherein the
given attribute name comprises a first attribute name 1n an
attribute-based expression that also includes at least a sec-
ond attribute name, wherein the at least one computer-
readable storage medium further comprises program instruc-

10

15

20

25

30

35

40

45

50

24

tions that are executable by the at least one processor such
that the computing platform 1s configured to dynamically
determine an attribute value that corresponds to the second
attribute name, and wherein the program instructions that
are executable by the at least one processor such that the

computing platform 1s configured to dynamically generate
the modified access permission further comprise program
instructions that are executable by the at least one processor
such that the computing platform 1s configured to replace the
second attribute name 1n the attribute-based expression with
the dynamically-determined attribute value that corresponds
to the second attribute name.

22. The computing platform of claim 12, wherein the
contextual information about the receipt of request com-
prises information about when the request was received.

23. A non-transitory computer readable medium compris-
ing instructions that, when executed by at least one proces-
sor of a computing platform, cause the computing platform
to:

recerve, from a client device, a request to access a

resource ol a computer system;
determine one or more roles of a user associated with the
client device, wherein each of the one or more roles has
a corresponding set of one or more permissions;

based on the one or more roles of the user, identify, as
being applicable to the received request, at least one
predefined access permission for performing a given
action on a given resource, wherein the predefined
access permission comprises (1) a definition of the
given action and (11) a definition of the given resource,
and wherein at least one of the definition of the given
action or the definition of the given resource includes a
given attribute name that serves as a placeholder to be
replaced by a corresponding attribute value prior to
using the predefined access permission to make an
access control decision;

dynamically determine an attribute value that corresponds

to the given attribute name included in the predefined
access permission, wherein the dynamically-deter-
mined attribute value comprises at least one of (1)
information about the user associated with the client
device from which the request was received, (11) infor-
mation about the resource for which access 1s being
requested, or (111) contextual imformation about the
receipt ol request;

dynamically generate a modified access permission that 1s

specific to the received request by replacing the given
attribute name included in the predefined access per-
mission with the dynamically-determined attribute
value; and

provide or deny access to the resource of the computer

system based on the modified access permission.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

